Package: LearnClust 1.1
LearnClust: Learning Hierarchical Clustering Algorithms
Classical hierarchical clustering algorithms, agglomerative and divisive clustering. Algorithms are implemented as a theoretical way, step by step. It includes some detailed functions that explain each step. Every function allows options to get different results using different techniques. The package explains non expert users how hierarchical clustering algorithms work.
Authors:
LearnClust_1.1.tar.gz
LearnClust_1.1.zip(r-4.5)LearnClust_1.1.zip(r-4.4)LearnClust_1.1.zip(r-4.3)
LearnClust_1.1.tgz(r-4.4-any)LearnClust_1.1.tgz(r-4.3-any)
LearnClust_1.1.tar.gz(r-4.5-noble)LearnClust_1.1.tar.gz(r-4.4-noble)
LearnClust_1.1.tgz(r-4.4-emscripten)LearnClust_1.1.tgz(r-4.3-emscripten)
LearnClust.pdf |LearnClust.html✨
LearnClust/json (API)
# Install 'LearnClust' in R: |
install.packages('LearnClust', repos = c('https://robertoalcantara9.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:10cd7f8a8a. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | NOTE | Nov 20 2024 |
R-4.5-linux | NOTE | Nov 20 2024 |
R-4.4-win | NOTE | Nov 20 2024 |
R-4.4-mac | NOTE | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:agglomerativeHCagglomerativeHC.detailscanberradistancecanberradistance.detailscanberradistanceWcanberradistanceW.detailschebyshevDistancechebyshevDistance.detailschebyshevDistanceWchebyshevDistanceW.detailsclusterDistanceclusterDistance.detailsclusterDistanceByApproachclusterDistanceByApproach.detailscomplementaryClusterscomplementaryClusters.detailscorrelationHCcorrelationHC.detailsdistancesdistances.detailsdivisiveHCdivisiveHC.detailsedistanceedistance.detailsedistanceWedistanceW.detailsgetClustergetCluster.detailsgetClusterDivisivegetClusterDivisive.detailsinitClustersinitClusters.detailsinitDatainitData.detailsinitImagesinitTargetinitTarget.detailsmatrixDistancemaxDistancemaxDistance.detailsmdAgglomerativemdAgglomerative.detailsmdDivisivemdDivisive.detailsmdistancemdistance.detailsmdistanceWmdistanceW.detailsminDistanceminDistance.detailsnewClusternewCluster.detailsnormalizeWeightnormalizeWeight.detailsoctileDistanceoctileDistance.detailsoctileDistanceWoctileDistanceW.detailstoListtoList.detailstoListDivisivetoListDivisive.detailsusefulClusters